NOTATION

X, ¥, 2 are the Cartesian coordinates;
are the perturbations of temperature and z component of velocity;
is the potential of magnetic field perturbations;
is the magnetization of liquid;
is the magnetic field intensity;
is the magnetic permeability of vacuum;
is the magnetic susceptibility;
is the dynamic viscosity; '
is the thermal conductivity;
is the thermal diffusivity;
is the acceleration due to gravity;
is the volume coefficient of expansion;
is the pyromagnetic coefficient;
is the layer thickness;
is the temperature gradient;
[kx, ky, 0] is the wave vector;
is the surface tension;
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s is the relative magnetic permeability;
is the amplitude of perturbations of free surface.
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CONVECTIVE MOTION OF A CONDUCTING LIQUID
IN AN ELECTROMAGNETIC FIELD, TAKING INTO
ACCOUNT FINITE WALL THICKNESS AND
THERMAL CONDUCTIVITY

Vu Zui Kuang and Ngo Zui Kan UDC 538.4:536.24
The effect of the temperature-dependent electrical conductivity of the liquid and the finite wall
thickness and the thermal conductivity on stability is investigated in a linear formulation,
In [1] the convective instability of a liquid layer in a magnetic field was investigated, taking into account
the finite wall thickness and thermal conductivity. In the present work, stability of this type is investigated
taking account of the temperature dependence of the electrical conductivity.

1. Formulation of the Problem

Consider an infinite horizontal layer of electrically conducting liquid of thickness B, the electrical con-
ductivity of which depends linearly on the temperature c=00 [14+a(T—7Tw)] under the condition that
|a(T—Tw)|<1 [2]. The walls bounding the layer have the same finite thickness and thermal conductivity
A. The temperatures at the external surfaces of the walls are given to be constant, but different (T4 is the
temperature at the lower wall and T, at the upper wall). In the y direction, a constant external electric field
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Fig. 1. Critical number
Ry as a function of ¥ with
ay = 0.1 for different
values of H: 1) H = 0.5; 2)
8.5,

of strength E is applied, and in the x direction a constant magnetic field of induction B. The magnetic field
induced by the currents flowing through the liquid are assumed small in comparison with the external field
under the condition

Eﬂ%’f—« 1, Rend 1

where [y is the magnetic permeability; Rey, is the magnetic Reynolds number.

The equilibrium state is characterized. by the following distribution of quantities marked by the sub-
script 0:
V=0, E,=E (0, E, 0), B,=B,(8, 0, 0)’

S 4+2¢)—1
Po = GgoEq Bz - const, T°=—SZ2+_(—2_1]%—+E)1~%(Z+¢)+L )

Here S = 04,Ej0%/2MAT characterizes the current strength; AT =Ty — Ty; ¢ = Aby/Mb characterizes the heat
conduction of the liquid and the wall [1}; A is the thermal conductivity of the liquid.

In a linear formulation, the initial system of equations for the perturbation takes the form [1-4]

Ju ap

= —— L ulhu,
ot ox @)
du ap " d¢ ‘)
02— P LuAv—onB| > +0B), 3
5 o +u 00 (62’ + 3)
ow ap d
Pt %wAw—‘L%B(—i—wB) — EqBo + pgfT, ()
ou dv Jw
R L AT L A}
0x + dy + dz )
0w ov do
OooA@ — 09y B | — —— | — E, — =0,
0P 00 (ay Py ) 0 3y (6)
oT | dT, o L, v
PCp (“57-1———‘-1-2— W) = — 204 E, (—E ——wB) -+ Epo -+ AAT, (N
0 = et (8

All the notation here is as commonly used.

2. Perturbation Equation for Vertical Velocity-Vector Component.

Perturbation~Monotonicity Condition

Differentiating Eqs. (2), (3), and (4) with respect to x, y, and z, respectively, adding them, and using
Eq. (5), the following relation is obtained;
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ov Jw do oT ’
—Ap—g, B2 [0 L %) g 9% L o 9)
P — oo (ay + az) % + ng oz

It follows from Eqs. (4) and (9) that

dAw 0% oA
= pA%w + o, B? — E,BA ® g, AT,
ot % 390z 0BAO + 0B EP O B2A4w - goPA¢

1o

2

A’ = az a .
. ox? oy?
Using Eq. (6), the following result is obtained from Eq. (10):
dAw 0% o
= uA2w — E — 0o B? A(T. 11)
ot [ oB o Coo o + gppA,

Applying the operator (3/0t — ®A — K) to both sides of Eq. (11), and using Eqs. (7) and (8), the following equa-
tion is obtained:

0 a O B2 : d \

O -\ (L — A=——L(——A_

(at m)(at ) @ oo Tk x
0% + 2%30E3Ba P _ EoBoga ( BowE, 4T, ) x
Ox? Py 0%x0y P pCp dz

A‘w-— 20'00Eo gﬁ aAqu + 2U°°EoﬁgA1w , (12)
dz oCp dy pcp

K= Eﬁo’ooa

where x= ;
fCp pep

B
v=—,
P

’

The solution of Eq, (12) ig sought in the form [1, 2]
w = W (2) cos (ax/b) cos (apy/b) exp nt,
T = 0(2) cos(ayx/b) cos (azy/b) exp nt,
@ = 1 (2) cos (a;x/b) sin (azy/b) exp nt.
Then a single equation for the amplitude and the perturbation is obtained:
IMP'? —(D*—a?) — A} (MP™'? —(D*—a®)] (D> — ) W =

2
= H2[MP'/? — (D* — a?) — A]a*W — 24H?a°W — 24H> %Z-z N+

2gb°ES0,,Pa?
+ 2B0EWOBT: \(1(1/2 ) + BRIGIW — RePW-t [Ry (112 — 1) + BRy] a2V, (13)
where
d 4 2 2 v
=—; {=—; @=a+a P=—;
& ¢ b 1+ a2 ”
- nb? C Hr— T B2? A= oo E S0 B2
(xv)'/? p A '
R = _EoBoua#AT b geaT 1
®w w 2¢ + I
__200EBBgbt | gpbon,Ei ., _ ahoEsBab
R, = Av P Re= VA L= A :

If the influence of Joule heating may be neglected, the terms containing A, L, and R4 drop out of the
right-hand side of Eq. (13). Then, following [2], it may be shown that in the case of heating from below (T >
T,), the principle of monotonic change in stability is satisfied provided that

EoBogx << pgP. 14)
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In contrast fo the case where the temperature dependence of the electrical conductivity is neglected {11,
the fact that a = 0 means that Eq. (14) is always satisfied. At sufficiently large electrical field strength and
magnetic induction, there may then be oscillations in the liquid during heating from below, whereas during
heating from above the oscillations are quenched if Eq. (14) is satisfied (in the particular case when B = 0 or
Eo = 0).

In the general case, it is assumed that the principle of monotonic change in stability is satisfied., If the
condition Ja(T —Tg)| <1 is to be satisfied, then it is necessary to have |A| < 1 [3], when all the terms contain-
ing A may be neglected in Eq. (13), and it may be assumed that M = 0. The result obtained is

(D — @) [(D* — a?? + H?a}) W=— a}RQW, {15)
where

Q= [RU2—)+0—Ri—r (1/2~z) Reor ¢+R7 }

2 o _ gpEp ., & ., 2gp
Ri=—="%7—+ R=—par ' R=Fhao, + & '

The boundary conditions for solid surfaces take the form
W = DW = [(D*—a%* ~ H%a{] W = 0 when {=0, 1. 186
Note that setting ¢ = 0 and 8 = 0 in Eq. (15) gives the case studied in [3], and a = 0 gives the case studied in [1].

3. Bubnov — Galerkin Method

A version of the Bubnov —~Galerkin method is used to solve Eq. (15) with the boundary conditions (16)
[4, 5]. It is expedient to replace Eq. (15) by the system

= [(D* — @+ Hai] W, an
(D? — ¥ F = — a} RQW. " a8)
The solution of Eq, (17) is sought in the form
= 2 E, sin mag, 19
m=1
where E,, are constant. It is obvious that Eq. (19) satisfies the condition F = 0 when ¢ = 0, 1.
Next, W is written in the form of a series:
W= ¥ ExWn (20)
; m==}
Substituting Egs. (19) and (20) into Eq. (17), an equation for determining Wy, is obtained:
(D? — a?? ~ H2a11 W, = sin mnaf (21)
with the boundary conditions '
Wpn=DW, =0 when{ =0, 1. (22)
The general solution of Eq. (21) takes the form
W =Tm (Amcoshol ch AL+ By cos Aol sh A + CrpSin Aol ch AL + Dy sin Al shdqf + sinm at), (23)

where
Ym = (MP02 + @%% + H%ai; b > ={1/2](@*+ alH?)!/2 £ a2}/2.

The constants Ay, By, Cm, and Dy are determined from the boundary conditions (22):
Ap=0, Bp=—AT" (m5n+ WCn)
m = [mx {(—1)"** A — hpsindyshAy -+ AycosApch Ay —
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— (Ag €05 Agsh Ay + Aq i Ay ch A | ctg AJVI(AS + A2) sin g sh A, —
— (A2 cos Agsh &y -+ Ay sin Az chAg) (Agcth Ay — Az ctg Ag)),
Dy = A7 [m s etg dy— Cp, (Ag cth Ay — Ay ctg M)l

Substituting Eqs. (19) and (20) into Eq. (18) yields

Y Eml(m*s® + a?) sinma — af RQI W = 0. (24)
m=1 . .

Multiplying Eq. (24) by sin I and integrating with respect to £ from 0 to 1, a system of homogeneous linear
equations for E, is obtained:

.Ym(mznz'tfz_)_ —_ _’E =
EE"‘{ 2a2R e (z)} 0

m=l1

For a nontrivial solution, the determinant of the coefficients must be zero:

| Ym(mn® +a?) o LAY
I 2a%R ™ (1)

l, =0, (25)
where

('Il) = j QvmW s sint InLdL.

Equation (25) gives the critical number R+, which characterizes the temperature dependence of the elec~
trical conductivity [2], as a function of the parameters of the problem. For fixed R, R;, Rg, Ry, and &, using
a fourth-order approximation (! = 4), the critical number R, is found, as well as the corresponding minima
of the wave numbers g, (for fixed ay) and a;s (for fixed ay).

Calculations on an ES-1022 computer show that R« decreases with increase in a;. In the case of no Joule
heating, as expected, the critical number R¢ increases with rise in ¥ and H (Fig. 1).

NOTATION

u, v, W are the velocity components along the x, y, and z axes;
T, p, are the temperature and pressure;
A, o0, v,8 are the thermal and electrical conductivity, kinematic viscosity, volume-expansion coefficient;
p is the density;
g is the acceleration due to gravity;
a is the coefficient taking into account change in conductivity of the liquid with temperature;
P is the perturbation of electric field strength;
K =pv
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